\begin{tabbing} abs{-}fifo\{i:l\}($C$; $T$)(${\it es}$,${\it In}$,${\it Out}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$\forall$$i$:$C$.\+ \\[0ex]$\exists$\=$f$:\{$e$:es{-}E(${\it es}$)$\mid$ abs{-}R($C$;${\it Out}$)($i$,$e$)\} $\rightarrow$\{$e$:es{-}E(${\it es}$)$\mid$ $\exists$$j$:$C$. (abs{-}S($C$;${\it In}$)($j$,$i$,$e$))\} \+ \\[0ex](antecedent{-}surjection(${\it es}$;$\lambda$$e$.abs{-}R($C$;${\it Out}$)($i$,$e$);$\lambda$$e$.$\exists$$j$:$C$. (abs{-}S($C$;${\it In}$)($j$,$i$,$e$));$f$) \\[0ex]\& (\=$\forall$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ abs{-}R($C$;${\it Out}$)($i$,$e$)\} , $j$:\{$j$:$C$$\mid$ abs{-}S($C$;${\it In}$)($j$,$i$,$f$($e$))\} .\+ \\[0ex](${\it Out}$($e$).2) = (${\it In}$($f$($e$)).2) $\in$ $T$) \-\\[0ex]\& (\=$\forall$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ abs{-}R($C$;${\it Out}$)($i$,$e$)\} , ${\it e'}$:\{$e$:es{-}E(${\it es}$)$\mid$ abs{-}R($C$;${\it Out}$)($i$,$e$)\} , $j$:$C$.\+ \\[0ex](abs{-}S($C$;${\it In}$)($j$,$i$,$f$($e$))) \\[0ex]$\Rightarrow$ (abs{-}S($C$;${\it In}$)($j$,$i$,$f$(${\it e'}$))) \\[0ex]$\Rightarrow$ es{-}causle(${\it es}$;$f$($e$);$f$(${\it e'}$)) \\[0ex]$\Rightarrow$ es{-}causle(${\it es}$;$e$;${\it e'}$))) \-\-\- \end{tabbing}